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A Bit of Universal Algebra

Definition. Let A be a nonempty set. We define
A’ = {@},
A" = set of n — tuples of elements of A.

An n-ary function (or n-ary operation) on A is a function A™ — A, where n
is the arity of the function.

Note. A 0-ary function just indicates a constant in A.

Definition. A language or type is a set F of function symbols each with an
associated arity. An algebra of type F is an ordered pair A = (A, F'), where
A is a nonempty set and F' is a set of functions on A indexed by F and with
matching arities.

An algebraic structure is an ordered triple A = (A, F,d), where (A, F) is
an JF algebra and d is a set of identities using F and ‘=’ symbol and vari-
able symbols, where we interpret an identity «(zi,...,x,) as the sentence
Va1 Vg ... Vi, alxy,...,2,). So we will have no quantifier except outer V’s.
The signature of an algebraic structure or F algebra is F. (Our book defines it
as (F,d), but then isn’t always consistent.)

Example 1 Groups.



Example 2 Rings.

(R, (+,.,—,0,1), (R, (+,—,0))is an abelian group,
z.(y.2) = (z.y).2,
zl=1lz ==z,
z(y+2z2)=zy+uz.2z
(y+2)x=yx+zzx).

Note. Signature does not need to be finite.

Example 3 Let F be a field. Vector spaces over F are (V,(+,—,0, (mx)rcr)
satisfying (V, (4, —,0)) is an abelian group, and where my is scalar multiplica-
tion by \:

YA€ F, my.(x +y) =my.x+ my.y,

VA p € F, ma(mu(x)) = mau(z) and my(z) + my(z) = may,u ().

As usual by abuse of notation the underlying set and the structure will have the
same name.

Definition. Let A and B be two F algebras. Then a function f: A — B is
a homomorphism if for any n-ary operation ¢ € F,

¢B(f(a1)7...,f(an)) = f((;SA(al,...,an)) Yay,...,an, € A,

where ¢? means ¢ as interpreted in B.

Let A be an F algebra. A substructure (or a subalgebra) of A is a subset of
A which is closed under all the operations of the signature.

Note. By their structure, all identities of A hold automatically in a substruc-
ture.

An isomorphism is a homomorphism which is one-to-one and onto.

In our setup the above requirements for a homomorphism to be an isomor-
phism are sufficient. If, however, you extend the definitions to allow relations
in F' as well as functions then you need to require also that the inverse map is
a homomorphism.

To see that in our setup the requirements are actually sufficient, suppose f
is a homomorphism and a set-bijection. Take ¢ € F, n-ary and ay,...,a, €
A, by,...,b, € B such that f(a;) = b;. Let g = f~!, then

F(@(g(®r)s - 9(bn))) = (™ (ar, ..., an))
= ¢"(f(ar), ..., f(an))
= ¢P(by, ..., bn).
So ¢A(g(b1)a s 7g(bn)) = g(¢B(b1a R bn))
Definition. An embedding or monomorphism is a one-to-one homomorphism.

An epimorphism is an onto homomorphism.
The next thing we turn to is how to take quotients.



Definition. Let A be an F algebra, and 6 an equivalence relation on A, and
suppose for V¢ € F which is n-ary if a1,...,an, b1,...,b, € A with a;0b;,

¢ (ar, ..., an)0¢" (br,. .. bn).

Then we say 0 is a congruence on A.
The point is that the compatibility property in the definition above intro-
duces an F algebra structure on A/6 as follows

¢%(a1/0,. .. an/0) = ¢ (ay,. .., an)/0,

and this is well defined by the property.
Another way to look at the compatibility property is: First view A x A as
an F algebra coordinatewise, i.e.,

A (a1, b1), -, (an,bn)) = (92 (a1, ..., an), ¢ (b1, ..., by)).

Then, if view 8 C A x A then the compatibility property says 6 is a substructure.
Take (a;,b;) € 6 (i.e. a;0b;), then

$"SAA (a1, br), s (an,ba)) = (% (ar, .-, an), @4 (br, -, bn))

is in 0 iff ¢A (a1, ..., an)0¢0*(b1,...,b,). So the compatibility property is equiv-
alent to 6 being closed.

Proposition 1 Let A and B be F algebras, f: A — B a homomorphism.
Let C be a substructure of A then f(C) is a substructure of B.
Let D be a substructure of B, then f~1(D) is a substructure of A.

Proof. Take ¢ € F, which is n-ary, and a1,...,a, € C. We have
¢B(f(a1)7 e af(an)) = f(¢A(ala s 7an)) € f(C)

For the other part,take by,...,b, € D. For any ay,...,a, with f(a;) = b; we
have

dB(by, ... by) = f(d?(ar, ..., an)).
N————— N————
€D cf~4(D)

Definition. For f: A — B as above we define kernel f to be

ker(f) = {(a,b) € A%: f(a) = f(B)}.

Proposition 2 For f : A — B as above, ker(f) is a congruence on A.



Proof. First note that ker(f) is a n equivalence relation since ‘=" is. Now, take
¢ € F, which is an n-ary, and (a;,b;) € ker(f),1 < i <n. Then

f@Mar,. . an)) = @5 (f(ar),. .., flan))
= f((rbA(bl, .. abn))

So (¢ (ay,...,an), ¢ (b1,...,by)) € ker(f), so ker(f) is a congruence. O
Therefore, A/ker(f) makes sense as an object. Further, for any congruence 6
we have the natural map

v:A— A/
a— a/b,
and this is a homomorphism by definition.

Theorem 1 (First Isomorphism Theorem, universal algebra version)
Let A, B be F algebras, and f : A — B a homomorphism. Then there is a
monomorphism g : A/ker(f) — B such that

A ! B
A

Fer(f)

commutes (i.e. f =gov), and, in particular, if f is onto then g is an isomor-
phism.

Proof. Try g(a/ker(f)) = f(a). If this is well defined then f = gowv. g
is indeed well defined, as if a and b are in the same ker(f) equivalence class,
a/ker(f) = b/ker(f), or, eqivalently, (a,b) € ker(f) or f(a) = f(b). This, also,
gives that ¢ is one-to-one.

To check that g is a homomorphism, take ¢ € F an n-ary, a,...,a, € A,
then

f (‘b”) (ke22f>""’kejzf))> = (W)
o (a1, ..., an))

= f(
= ¢B(f(a1)7"'vf(an))
=0

(o (in) o (i)

O
Definition. Let € and « be congruences of A and suppose 6 C v as subsets of

A x A. Then let
2
v_)(e?b AV"
0—{<9,9)€(9) .(a,b)E'y}.




A
Proposition 3 With 0, as above, % 1S a congruence on YR

a; by

Proof. Take ¢ € F, n-ary, and ( ]

>€Z, 1 <i < n, then (a;,b;) € v by

definition. So
(0% (a1,...,an), ¢ (b1,....bn)) €7,

since < is a congruence. S0

(68 (5 %) 6 ()

Theorem 2 (Second Isomorphism Theorem, universal algebra version)
Let A be an F algebra, 0 C ~ congruence on A. Then there is an isomorphism

(3 4
gwen by f (Eg;) = %

@ 7
Proof. Similar to the others. U
The Third Isomorphism Theorem is a bit more technical. For A an F alge-
bra, § congruence on A, and B a subset of A, define BY = {a €A:BNjg# @},
and 6|p = 0 N B2 = 0 restricted to B.

Proposition 4 BY is a substructure of A and 0|p is a congruence of B.

Proof. The second is easy. For the first, take ¢ € F, n-ary, and a1,...,a, € BY.
Then I can take by,...,b, € B such that (a;,b;) € 0, so

(¢A(a1a s '7a’n)7¢A(b17 e '7bn)) co

and
¢ (b1,...,bn) = ¢P(by,...,b,) € B
so ¢ (ay,...,a,) € BY. O

Theorem 3 (Third Isomorphism Theorem, universal algebra version)
Let A be an F algebra, B its substructure, and 6 a congruence of A. Then there
s an isomorphism

BB
@ls)  (Ols)

. b b
given by f <(0|B)) = @0
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