Commutative Algebra Fall 2013, Lecture 1

Karen Yeats Scribe: Mahdieh Malekian

September 6, 2013

A Bit of Universal Algebra

Definition. Let A be a nonempty set. We define

$$A^0 = \{\varnothing\},$$

$$A^n = \text{set of } n - \text{tuples of elements of } A.$$

An *n*-ary function (or *n*-ary operation) on A is a function $A^n \longrightarrow A$, where n is the arity of the function.

Note. A 0-ary function just indicates a constant in A.

Definition. A language or type is a set \mathcal{F} of function symbols each with an associated arity. An algebra of type \mathcal{F} is an ordered pair $\mathcal{A} = (A, F)$, where A is a nonempty set and F is a set of functions on A indexed by \mathcal{F} and with matching arities.

An algebraic structure is an ordered triple $\mathcal{A} = (A, \mathcal{F}, d)$, where (A, \mathcal{F}) is an \mathcal{F} algebra and d is a set of identities using \mathcal{F} and '=' symbol and variable symbols, where we interpret an identity $\alpha(x_1, \ldots, x_n)$ as the sentence $\forall x_1 \forall x_2 \ldots \forall x_n, \ \alpha(x_1, \ldots, x_n)$. So we will have no quantifier except outer \forall 's. The *signature* of an algebraic structure or \mathcal{F} algebra is \mathcal{F} . (Our book defines it as (\mathcal{F}, d) , but then isn't always consistent.)

Example 1 Groups.

$$(G, (., ^{-1}, 1), (x.(y.z) = (x.y).z,$$

 $x.x^{-1} = 1 = x^{-1}.x,$
 $x.1 = 1.x = x)).$

And for abelian groups we have:

$$(G, (., ^{-1}, 1), (x.(y.z) = (x.y).z,$$

 $x.x^{-1} = 1 = x^{-1}.x,$
 $x.1 = 1.x = x,$
 $x.y = y.x))$

Example 2 Rings.

$$(R, (+, ., -, 0, 1), (R, (+, -, 0))$$
 is an abelian group,
 $x.(y.z) = (x.y).z,$
 $x.1 = 1.x = x,$
 $x.(y+z) = x.y + x.z,$
 $(y+z).x = y.x + z.x).$

Note. Signature does not need to be finite.

Example 3 Let F be a field. Vector spaces over F are $(V, (+, -, 0, (m_{\lambda})_{\lambda \in F})$ satisfying (V, (+, -, 0)) is an abelian group, and where m_{λ} is scalar multiplication by λ :

$$\forall \lambda \in F, \ m_{\lambda}.(x+y) = m_{\lambda}.x + m_{\lambda}.y,$$

$$\forall \lambda, \mu \in F, \ m_{\lambda}(m_{\mu}(x)) = m_{\lambda\mu}(x) \ and \ m_{\lambda}(x) + m_{\mu}(x) = m_{\lambda+\mu}(x).$$

As usual by abuse of notation the underlying set and the structure will have the same name.

Definition. Let A and B be two \mathcal{F} algebras. Then a function $f:A\longrightarrow B$ is a homomorphism if for any n-ary operation $\phi\in\mathcal{F}$,

$$\phi^B(f(a_1),\ldots,f(a_n)) = f(\phi^A(a_1,\ldots,a_n)) \quad \forall a_1,\ldots,a_n \in A,$$

where ϕ^B means ϕ as interpreted in B.

Let A be an \mathcal{F} algebra. A *substructure* (or a *subalgebra*) of A is a subset of A which is closed under all the operations of the signature.

Note. By their structure, all identities of A hold automatically in a substructure.

An *isomorphism* is a homomorphism which is one-to-one and onto.

In our setup the above requirements for a homomorphism to be an isomorphism are sufficient. If, however, you extend the definitions to allow relations in F as well as functions then you need to require also that the inverse map is a homomorphism.

To see that in our setup the requirements are actually sufficient, suppose f is a homomorphism and a set-bijection. Take $\phi \in \mathcal{F}$, n-ary and $a_1, \ldots, a_n \in A$, $b_1, \ldots, b_n \in B$ such that $f(a_i) = b_i$. Let $g = f^{-1}$, then

$$f(\phi^{A}(g(b_{1}),...,g(b_{n}))) = f(\phi^{A}(a_{1},...,a_{n}))$$

= $\phi^{B}(f(a_{1}),...,f(a_{n}))$
= $\phi^{B}(b_{1},...,b_{n}).$

So $\phi^A(g(b_1), \dots, g(b_n)) = g(\phi^B(b_1, \dots, b_n)).$

Definition. An *embedding* or *monomorphism* is a one-to-one homomorphism. An *epimorphism* is an onto homomorphism.

The next thing we turn to is how to take quotients.

Definition. Let A be an \mathcal{F} algebra, and θ an equivalence relation on A, and suppose for $\forall \phi \in \mathcal{F}$ which is n-ary if $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$ with $a_i \theta b_i$,

$$\phi^A(a_1,\ldots,a_n)\theta\phi^A(b_1,\ldots,b_n).$$

Then we say θ is a *congruence* on A.

The point is that the compatibility property in the definition above introduces an \mathcal{F} algebra structure on A/θ as follows

$$\phi^{A/\theta}(a_1/\theta,\ldots,a_n/\theta) = \phi^A(a_1,\ldots,a_n)/\theta,$$

and this is well defined by the property.

Another way to look at the compatibility property is: First view $A \times A$ as an \mathcal{F} algebra coordinatewise, i.e.,

$$\phi^{A \times A}((a_1, b_1), \dots, (a_n, b_n)) = (\phi^A(a_1, \dots, a_n), \phi^A(b_1, \dots, b_n)).$$

Then, if view $\theta \subseteq A \times A$ then the compatibility property says θ is a substructure. Take $(a_i, b_i) \in \theta$ (i.e. $a_i \theta b_i$), then

$$\phi^{\theta \subseteq A \times A}((a_1, b_1), \dots, (a_n, b_n)) = (\phi^A(a_1, \dots, a_n), \phi^A(b_1, \dots, b_n))$$

is in θ iff $\phi^A(a_1,\ldots,a_n)\theta\phi^A(b_1,\ldots,b_n)$. So the compatibility property is equivalent to θ being closed.

Proposition 1 Let A and B be \mathcal{F} algebras, $f: A \longrightarrow B$ a homomorphism. Let C be a substructure of A then f(C) is a substructure of B. Let D be a substructure of B, then $f^{-1}(D)$ is a substructure of A.

Proof. Take $\phi \in \mathcal{F}$, which is n-ary, and $a_1, \ldots, a_n \in C$. We have

$$\phi^B(f(a_1), \dots, f(a_n)) = f(\phi^A(a_1, \dots, a_n)) \in f(C).$$

For the other part, take $b_1, \ldots, b_n \in D$. For any a_1, \ldots, a_n with $f(a_i) = b_i$ we have

$$\underbrace{\phi^B(b_1,\ldots,b_n)}_{\in D} = f(\underbrace{\phi^A(a_1,\ldots,a_n)}_{\in f^{-1}(D)}).$$

Definition. For $f: A \longrightarrow B$ as above we define kernel f to be

$$\ker(f) = \{(a, b) \in A^2 : f(a) = f(b)\}.$$

Proposition 2 For $f: A \longrightarrow B$ as above, ker(f) is a congruence on A.

Proof. First note that $\ker(f)$ is a n equivalence relation since '=' is. Now, take $\phi \in \mathcal{F}$, which is an n-ary, and $(a_i, b_i) \in \ker(f), 1 \leq i \leq n$. Then

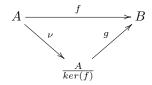
$$f(\phi^{A}(a_{1},...,a_{n})) = \phi^{B}(f(a_{1}),...,f(a_{n}))$$
$$= \phi^{B}(f(b_{1}),...,f(b_{n}))$$
$$= f(\phi^{A}(b_{1},...,b_{n})).$$

So $(\phi^A(a_1,\ldots,a_n),\phi^A(b_1,\ldots,b_n)) \in \ker(f)$, so $\ker(f)$ is a congruence. \square Therefore, $A/\ker(f)$ makes sense as an object. Further, for any congruence θ we have the natural map

$$\nu : A \longrightarrow A/\theta$$
 $a \longmapsto a/\theta$,

and this is a homomorphism by definition.

Theorem 1 (First Isomorphism Theorem, universal algebra version) Let A, B be \mathcal{F} algebras, and $f: A \longrightarrow B$ a homomorphism. Then there is a monomorphism $g: A/\ker(f) \longrightarrow B$ such that



commutes (i.e. $f = g \circ \nu$), and, in particular, if f is onto then g is an isomorphism.

Proof. Try $g(a/\ker(f)) = f(a)$. If this is well defined then $f = g \circ \nu$. g is indeed well defined, as if a and b are in the same $\ker(f)$ equivalence class, $a/\ker(f) = b/\ker(f)$, or, eqivalently, $(a,b) \in \ker(f)$ or f(a) = f(b). This, also, gives that g is one-to-one.

To check that g is a homomorphism, take $\phi \in \mathcal{F}$ an n-ary, $a_1, \ldots, a_n \in A$, then

$$g\left(\phi^{\frac{A}{\ker(f)}}\left(\frac{a_1}{\ker(f)},\dots,\frac{a_n}{\ker(f)}\right)\right) = g\left(\frac{\phi^A(a_1,\dots,a_n)}{\ker(f)}\right)$$

$$= f(\phi^A(a_1,\dots,a_n))$$

$$= \phi^B(f(a_1),\dots,f(a_n))$$

$$= \phi^B\left(g\left(\frac{a_1}{\ker(f)}\right),\dots,g\left(\frac{a_n}{\ker(f)}\right)\right).$$

Definition. Let θ and γ be congruences of A and suppose $\theta \subseteq \gamma$ as subsets of $A \times A$. Then let

$$\frac{\gamma}{\theta} = \left\{ \left(\frac{a}{\theta}, \frac{b}{\theta}\right) \in \left(\frac{A}{\theta}\right)^2 : (a, b) \in \gamma \right\}.$$

Proposition 3 With θ, γ as above, $\frac{\gamma}{\theta}$ is a congruence on $\frac{A}{\theta}$.

Proof. Take $\phi \in \mathcal{F}$, *n*-ary, and $\left(\frac{a_i}{\theta}, \frac{b_i}{\theta}\right) \in \frac{\gamma}{\theta}$, $1 \leq i \leq n$, then $(a_i, b_i) \in \gamma$ by definition. So

$$(\phi^A(a_1,\ldots,a_n),\phi^A(b_1,\ldots,b_n))\in\gamma,$$

since γ is a congruence. So

$$\left(\phi^{\frac{A}{\theta}}\left(\frac{a_1}{\theta},\dots,\frac{a_n}{\theta}\right),\phi^{\frac{A}{\theta}}\left(\frac{b_1}{\theta},\dots,\frac{b_n}{\theta}\right)\right)$$

$$=\left(\frac{\phi^A(a_1,\dots,a_n)}{\theta},\frac{\phi^A(b_1,\dots,b_n)}{\theta}\right)$$

$$\in\frac{\gamma}{\theta}.$$

Theorem 2 (Second Isomorphism Theorem, universal algebra version) Let A be an \mathcal{F} algebra, $\theta \subseteq \gamma$ congruence on A. Then there is an isomorphism

$$\frac{\left(\frac{A}{\theta}\right)}{\left(\frac{\gamma}{\theta}\right)} \longrightarrow \frac{A}{\gamma}$$

given by
$$f\left(\frac{\left(\frac{a}{\theta}\right)}{\left(\frac{\gamma}{\theta}\right)}\right) = \frac{a}{\gamma}$$
.

Proof. Similar to the others.

The Third Isomorphism Theorem is a bit more technical. For A an \mathcal{F} algebra, θ congruence on A, and B a subset of A, define $B^{\theta} = \left\{ a \in A : B \cap \frac{a}{\theta} \neq \varnothing \right\}$, and $\theta|_B = \theta \cap B^2 = \theta$ restricted to B.

Proposition 4 B^{θ} is a substructure of A and $\theta|_{B}$ is a congruence of B.

Proof. The second is easy. For the first, take $\phi \in \mathcal{F}$, n-ary, and $a_1, \ldots, a_n \in B^{\theta}$. Then I can take $b_1, \ldots, b_n \in B$ such that $(a_i, b_i) \in \theta$, so

$$(\phi^A(a_1,\ldots,a_n),\phi^A(b_1,\ldots,b_n))\in\theta$$

and

$$\phi^A(b_1,\ldots,b_n) = \phi^B(b_1,\ldots,b_n) \in B$$

so
$$\phi^A(a_1,\ldots,a_n) \in B^{\theta}$$
.

Theorem 3 (Third Isomorphism Theorem, universal algebra version) Let A be an \mathcal{F} algebra, B its substructure, and θ a congruence of A. Then there is an isomorphism

$$\frac{B}{(\theta|_B)} \longrightarrow \frac{B^{\theta}}{(\theta|_{B^{\theta}})}$$

given by $f\left(\frac{b}{(\theta|_B)}\right) = \frac{b}{(\theta|_{B^\theta})}$.

References