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A Bit of Universal Algebra

Definition. Let A be a nonempty set. We define

A0 = {∅},
An = set of n− tuples of elements of A.

An n-ary function (or n-ary operation) on A is a function An −→ A, where n
is the arity of the function.
Note. A 0-ary function just indicates a constant in A.
Definition. A language or type is a set F of function symbols each with an
associated arity. An algebra of type F is an ordered pair A = (A,F ), where
A is a nonempty set and F is a set of functions on A indexed by F and with
matching arities.

An algebraic structure is an ordered triple A = (A,F , d), where (A,F) is
an F algebra and d is a set of identities using F and ‘=’ symbol and vari-
able symbols, where we interpret an identity α(x1, . . . , xn) as the sentence
∀x1∀x2 . . . ∀xn, α(x1, . . . , xn). So we will have no quantifier except outer ∀’s.
The signature of an algebraic structure or F algebra is F . (Our book defines it
as (F , d), but then isn’t always consistent.)

Example 1 Groups.

(G, (.,−1 , 1), (x.(y.z) = (x.y).z,

x.x−1 = 1 = x−1.x,

x.1 = 1.x = x)).

And for abelian groups we have:

(G, (.,−1 , 1), (x.(y.z) = (x.y).z,

x.x−1 = 1 = x−1.x,

x.1 = 1.x = x,

x.y = y.x))
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Example 2 Rings.

(R, (+, .,−, 0, 1), (R, (+,−, 0))is an abelian group,

x.(y.z) = (x.y).z,

x.1 = 1.x = x,

x.(y + z) = x.y + x.z,

(y + z).x = y.x+ z.x).

Note. Signature does not need to be finite.

Example 3 Let F be a field. Vector spaces over F are (V, (+,−, 0, (mλ)λ∈F )
satisfying (V, (+,−, 0)) is an abelian group, and where mλ is scalar multiplica-
tion by λ:

∀λ ∈ F, mλ.(x+ y) = mλ.x+mλ.y,

∀λ, µ ∈ F, mλ(mµ(x)) = mλµ(x) and mλ(x) +mµ(x) = mλ+µ(x).

As usual by abuse of notation the underlying set and the structure will have the
same name.
Definition. Let A and B be two F algebras. Then a function f : A −→ B is
a homomorphism if for any n-ary operation φ ∈ F ,

φB(f(a1), . . . , f(an)) = f(φA(a1, . . . , an)) ∀a1, . . . , an ∈ A,

where φB means φ as interpreted in B.
Let A be an F algebra. A substructure (or a subalgebra) of A is a subset of

A which is closed under all the operations of the signature.
Note. By their structure, all identities of A hold automatically in a substruc-
ture.

An isomorphism is a homomorphism which is one-to-one and onto.
In our setup the above requirements for a homomorphism to be an isomor-

phism are sufficient. If, however, you extend the definitions to allow relations
in F as well as functions then you need to require also that the inverse map is
a homomorphism.

To see that in our setup the requirements are actually sufficient, suppose f
is a homomorphism and a set-bijection. Take φ ∈ F , n-ary and a1, . . . , an ∈
A, b1, . . . , bn ∈ B such that f(ai) = bi. Let g = f−1, then

f(φA(g(b1), . . . , g(bn))) = f(φA(a1, . . . , an))

= φB(f(a1), . . . , f(an))

= φB(b1, . . . , bn).

So φA(g(b1), . . . , g(bn)) = g(φB(b1, . . . , bn)).
Definition. An embedding or monomorphism is a one-to-one homomorphism.
An epimorphism is an onto homomorphism.

The next thing we turn to is how to take quotients.
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Definition. Let A be an F algebra, and θ an equivalence relation on A, and
suppose for ∀φ ∈ F which is n-ary if a1, . . . , an, b1, . . . , bn ∈ A with aiθbi,

φA(a1, . . . , an)θφA(b1, . . . , bn).

Then we say θ is a congruence on A.
The point is that the compatibility property in the definition above intro-

duces an F algebra structure on A/θ as follows

φA/θ(a1/θ, . . . , an/θ) = φA(a1, . . . , an)/θ,

and this is well defined by the property.
Another way to look at the compatibility property is: First view A × A as

an F algebra coordinatewise, i.e.,

φA×A((a1, b1), . . . , (an, bn)) = (φA(a1, . . . , an), φA(b1, . . . , bn)).

Then, if view θ ⊆ A×A then the compatibility property says θ is a substructure.
Take (ai, bi) ∈ θ (i.e. aiθbi), then

φθ⊆A×A((a1, b1), . . . , (an, bn)) = (φA(a1, . . . , an), φA(b1, . . . , bn))

is in θ iff φA(a1, . . . , an)θφA(b1, . . . , bn). So the compatibility property is equiv-
alent to θ being closed.

Proposition 1 Let A and B be F algebras, f : A −→ B a homomorphism.
Let C be a substructure of A then f(C) is a substructure of B.
Let D be a substructure of B, then f−1(D) is a substructure of A.

Proof. Take φ ∈ F , which is n-ary, and a1, . . . , an ∈ C. We have

φB(f(a1), . . . , f(an)) = f(φA(a1, . . . , an)) ∈ f(C).

For the other part,take b1, . . . , bn ∈ D. For any a1, . . . , an with f(ai) = bi we
have

φB(b1, . . . , bn)︸ ︷︷ ︸
∈D

= f(φA(a1, . . . , an)︸ ︷︷ ︸
∈f−1(D)

).

�
Definition. For f : A −→ B as above we define kernel f to be

ker(f) = {(a, b) ∈ A2 : f(a) = f(b)}.

Proposition 2 For f : A −→ B as above, ker(f) is a congruence on A.
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Proof. First note that ker(f) is a n equivalence relation since ‘=’ is. Now, take
φ ∈ F , which is an n-ary, and (ai, bi) ∈ ker(f), 1 ≤ i ≤ n. Then

f(φA(a1, . . . , an)) = φB(f(a1), . . . , f(an))

= φB(f(b1), . . . , f(bn))

= f(φA(b1, . . . , bn)).

So (φA(a1, . . . , an), φA(b1, . . . , bn)) ∈ ker(f), so ker(f) is a congruence. �
Therefore, A/ ker(f) makes sense as an object. Further, for any congruence θ
we have the natural map

ν :A −→ A/θ

a 7−→ a/θ,

and this is a homomorphism by definition.

Theorem 1 (First Isomorphism Theorem, universal algebra version)
Let A,B be F algebras, and f : A −→ B a homomorphism. Then there is a
monomorphism g : A/ker(f) −→ B such that

A
f //

ν

!!

B

A
ker(f)

g
==

commutes (i.e. f = g ◦ ν), and, in particular, if f is onto then g is an isomor-
phism.

Proof. Try g(a/ ker(f)) = f(a). If this is well defined then f = g ◦ ν. g
is indeed well defined, as if a and b are in the same ker(f) equivalence class,
a/ker(f) = b/ker(f), or, eqivalently, (a, b) ∈ ker(f) or f(a) = f(b). This, also,
gives that g is one-to-one.

To check that g is a homomorphism, take φ ∈ F an n-ary, a1, . . . , an ∈ A,
then

g

(
φ

A
ker(f)

(
a1

ker(f)
, . . . ,

an
ker(f)

))
= g

(
φA(a1, . . . , an)

ker(f)

)
= f(φA(a1, . . . , an))

= φB(f(a1), . . . , f(an))

= φB
(
g

(
a1

ker(f)

)
, . . . , g

(
an

ker(f)

))
.

�
Definition. Let θ and γ be congruences of A and suppose θ ⊆ γ as subsets of
A×A. Then let

γ

θ
=

{(
a

θ
,
b

θ

)
∈
(
A

θ

)2

: (a, b) ∈ γ

}
.
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Proposition 3 With θ, γ as above,
γ

θ
is a congruence on

A

θ
.

Proof. Take φ ∈ F , n-ary, and

(
ai
θ
,
bi
θ

)
∈ γ

θ
, 1 ≤ i ≤ n, then (ai, bi) ∈ γ by

definition. So
(φA(a1, . . . , an), φA(b1, . . . , bn)) ∈ γ,

since γ is a congruence. So(
φ
A
θ

(a1
θ
, . . . ,

an
θ

)
, φ

A
θ

(
b1
θ
, . . . ,

bn
θ

))
=

(
φA(a1, . . . , an)

θ
,
φA(b1, . . . , bn)

θ

)
∈ γ

θ
.

�

Theorem 2 (Second Isomorphism Theorem, universal algebra version)
Let A be an F algebra, θ ⊆ γ congruence on A. Then there is an isomorphism(

A
θ

)(
γ
θ

) −→ A

γ

given by f

((
a
θ

)(
γ
θ

)) = a
γ .

Proof. Similar to the others. �
The Third Isomorphism Theorem is a bit more technical. For A an F alge-

bra, θ congruence on A, and B a subset of A, define Bθ =
{
a ∈ A : B ∩ a

θ 6= ∅
}

,
and θ|B = θ ∩B2 = θ restricted to B.

Proposition 4 Bθ is a substructure of A and θ|B is a congruence of B.

Proof. The second is easy. For the first, take φ ∈ F , n-ary, and a1, . . . , an ∈ Bθ.
Then I can take b1, . . . , bn ∈ B such that (ai, bi) ∈ θ, so

(φA(a1, . . . , an), φA(b1, . . . , bn)) ∈ θ

and
φA(b1, . . . , bn) = φB(b1, . . . , bn) ∈ B

so φA(a1, . . . , an) ∈ Bθ. �

Theorem 3 (Third Isomorphism Theorem, universal algebra version)
Let A be an F algebra, B its substructure, and θ a congruence of A. Then there
is an isomorphism

B

(θ|B)
−→ Bθ

(θ|Bθ )

given by f
(

b
(θ|B)

)
= b

(θ|
Bθ

) .
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